
Open-Source Drilling Community
(OSDC) – Technical Seminar Series

Open-Source Drilling Community

2

• To join, visit the Open-Source
Drilling Community Website:
https://opensourcedrilling.org

• Add your contact information
to the Mailing List /
Contribute tab

• MIT Open-Source License – All
models, data, and test cases
are freely available for
academic and commercial use

https://opensourcedrilling.org/

Progress Toward An Open-source Drilling
Community: Contributing And Curating

Models

SPE-208794-MS

Roman J. Shor, Shanti Swaroop Kandala (University of Calgary), Eduardo Gildin, Sam F.
Noynaert, Enrique Z. Losoya, Vivek Kesireddy, Narendra Vishnumolakala (Texas A&M

University), Inho Kim (Mathworks), James Ng (Pason Systems Corporation), Josh K. Wilson
(Scientific Drilling International), Eric Cayeux (NORCE), Rajat Dixit (ExxonMobil Services &

Technology Pvt Ltd), Gregory S. Payette (ExxonMobil Upstream Research), Ty Cunningham and
Paul E. Pastusek (ExxonMobil Upstream Integrated Solutions),

Workshop Objectives

• Main objective: how can you contribute to the OSDC GitHub?
 Codes you upload what will happen ?
 Someone’s code can I contribute/modify/extend and share?

• Git/GitHub introduces the concept of version control and data/code
repositories
 You will see only the basic/concepts

• You will learn :
 How to maintain version control
 Create a data repository
 Share data
 Clone/branch repositories
 Check and Create GitHub webpages

4

More Training:
• https://github.com/apps/

github-learning-lab
• https://skills.github.com/
• https://github.com/topics

/learning-lab

https://github.com/apps/github-learning-lab
https://skills.github.com/
https://github.com/topics/learning-lab

Workshop Series – Tentative Schedule*

• Feb 27. Eduardo: GitHub Part 1
• Mar 20. Eduardo: GitHub Part 2 more features
• Mar 27. Eric & Gilles: Rheological Model Calibration from

Couette Rheometer and pipe rheometer
• Apr 24. Eric & Gilles: Packaging Open-Source Code as a

Microservice for seamless interoperability across multiple
programming languages

5* Subject to change keep vising the OSCD webpage for more info

What is Git/GitHub?

• Git Git is a version control system (VCS) to keep track
of changes to files, projects and data over time.
 You have already used some form of VCS !!!!

• GitHub GitHub is a hosting service for Git repositories.
Simplifies the process of sharing code between
developers.

GitHub & GitHub Enterprise are independent
 https://it.tamu.edu/services/websites-applications-and-software/design-
development-and-administration/github/
 https://github.tamu.edu/

6

https://it.tamu.edu/services/websites-applications-and-software/design-development-and-administration/github/
https://github.tamu.edu/

Other common examples of version control
• These are very primitive examples of version control
 File naming – (e.g., project_v1.doc, project_v2.doc,…

project_vfinal.doc)
 Microsoft Word : Track changes
 Adobe Photoshop: History (see changes to an image)
 Undo: Crtl+Z (Windows), Cmd-Z (Mac)

• But, in real cases (big projects), there is no substitute for a
VCS (like Git)

7

What is Revision Control (VCS)?
• Version Control System (VCS) or Revision Control or Source

Control (SCM*) describes the process of monitoring changes in
sets of information
 Especially text changes (like code) Source code management tool

• In the software development process, revision control is the
management of changes made over time. These changes can be
to source code, project assets, or any other information that goes
into the finished product.
 The collection of revisions and their metadata is called a repository or

repo. usually hosted on a networked server.

*SCM – source code management 8

https://www.computerhope.com/jargon/m/metadata.htm

Repository
• The sets of information are usually documents, source codes,

large web repositories or alike any file
• The set of all information (usually files) under revision control

makes a repository
• The repository represents a step-by-step chronological record of

every change made to help project managers revert all or part of
the project to a previous state if necessary.
 A set of changes to a single or multiple pieces of information (files)

constitute a revision of the repository, and in the case of software a set of
revisions defines a new version.

Source: Dr. Jens Saak (Max Planck Institute)
9

Revision Purposes
• The revisions get assigned a unique name that may be an identification

number or a human readable text.
• The main purposes of revision control can be summarized as the following

items:
 Logging of changes: at any later stage of development of the information it is clear which

change has been added by whom and when this happened.
 Recovery of earlier states of the single pieces of information: accidental or erroneous

changes can be identified and rolled back.
 Archiving: It is possible to get back to each state of the set of information, e.g. to make

computational results reproducible.
 Coordination of joint work on the information by several collaborators.
 Parallel development of multiple branches of the information with the possibility to merge

single branches back to a main development stream.

Source: Dr. Jens Saak (Max Planck Institute) 10

Very General Workflow (The Three Trees)

Create
new

file(s)

Add
file(s)

to repo

Commit
file(s)

to repo

Merge
file(s)

in repo

Adding/Staging

For multiple files/branches
 Merging

Checking out

11

Very General Workflow
• If the developer has created a new file that should become part of the project, the file

must be added to the repository. The file is uploaded to the repository, and anyone
else working on the project can see and use the file.

• If the developer wants to edit a file that is already part of the project, the file must be
checked out. The act of checking out downloads the desired revision of the file to
the developer's local version of the project. Usually, the revision that a developer
wants to edit is the most recent revision: this revision is known as the "head".

• After the developer edits the file locally and is ready to add it to the official version of
the project, the file can be checked in. This action is also known as making a
commit. The developer is asked to write a summary of what changes were made
and why. These comments, with the updated version of the file, are uploaded to the
repository.

12

Very General Workflow
• If someone else has checked in revisions to the same file since the last time

the developer checked it out, the system announces that there are conflicts.
It calculates the differences line-by-line, and the developers who made the
changes must agree upon how their individual changes should be merged.
The merging is usually done manually: the developers compare the
conflicting versions and decide how to resolve them into one document.

• If there are no conflicts, the new version is updated in the repository, and
the entire project receives a new revision number, permanently and uniquely
identifying its current state.

13

Some Historical Perspective (1/3)
• There are 5 important version control system before Git
 Source Code Control System (SCCS)

• 1972 – closed source (from AT&T)
• UNIX only – free with UNIX – very popular
• Keep the original doc and save a snapshot of the changes

 Revision Control System (RSC)
• 1982, Multiple platform / PC’s
• Faster smarter storage strategy
• Stored latest version and sets of changes (reverse) faster

Issues:
Work with
individual
file one at a
time! no
project
tracking

V1 V2v3 V4 V5
snapshot snapshot snapshot

V1 V2v3 V4 V5 Usually wants the current version
Source: Kevin Skoglund 14

Some Historical Perspective (2/3)
• Evolution!
 Concurrent Versions Systems (CVS)

• 1986-1990: open source
• Multiple files entire project
• Concurrent files multi-user repositories –
• Can store repo on a remote server more than one user can work on multiple files

 Apache Subversion (SVN)
• 2000: open source Faster
• Allow for non text files
• Track files/directories as a whole (collectively) instead of version 3, file is in

revision 3.
• Stayed the most popular version of version control until Git

15

Some Historical Perspective (3/3)
• Milestone Distributed version control
 BitKeeper SCM

• 2000-2005: (closed source)
• Create “community” version (free) adopted in Linux Kernel (free)

but it is proprietary software!
 Git is Born!

• April 2005 by Linus Torvalds (Linux creator)
• Open source and free!
• Compatible with Linux, macOS, Windows
• Faster than other SCMs (100X) and Better Safeguards

16

Git – Explosion of popularity
• GitHub Launched in 2008 to host Git repositories
• Revision Control Meets Social Media! function like a

webpage
• Some Stats
 2009: over 50,000 repos, over 100,000 users
 2011: over 2 million repos, 1 million users
 2018: bought by Microsoft
 2019: over 57 million repos, over 28 million users

17

What is Distributed Version Control?
• Main idea

 Different users maintain their own repository
 No central repository
 Track changes and not versions track change sets
 When ready merge change sets or “apply patches”

• Benefits
 No need to communicate with a central server
 No network access required
 No single failure point
 Encourages collaboration “forking of projects”
 Developers can work independently
 Change sets can be accepted/rejected “pull request”

18

Centralized X Distributed Models

Centralized Model

Distributed Model

(CVS, Subversion, Perforce) (Git, Mercurial)

• No central repository
• Different users maintain

their own repo
• Changes are stored as

change sets track
changes and not
versions

• “merge” in change sets
• Many working copies

Pics by Ruth Anderson, images from http://git-scm.com/book/en/ 19

20

Git Takes Snapshots

Pics by Ruth Anderson, images from http://git-scm.com/book/en/ 21

Git file lifecycle

Pics by Ruth Anderson, images from http://git-scm.com/book/en/ 22

A Local Git project has three areas

Unmodified/modified
Files

Staged
Files

Committed
Files

Pics by Ruth Anderson, images from http://git-scm.com/book/en/ 23

Download/Install Git
• Mac users if new

mac probably you have
a version of Git

• Mac/Windows go to
http://git-scm.com/

• It will recognize your
computer
(mac/windows)
download

Great step-by-step https://www.stanleyulili.com/git/how-to-install-git-bash-on-windows/24

http://git-scm.com/
https://www.stanleyulili.com/git/how-to-install-git-bash-on-windows/

UINIX TERMINAL
• Historically created with a Bash (Bourne Again Shell) environment
 A shell is a terminal application used to interface with an operating system

through written commands.
 Set of command line utility programs that are designed to execute on a

Unix style command-line environment.
• Command prompt or terminal
 Windows cmd
 Mac terminal
 Especially for Git Git bash

25

UNIX/LINUX Commands
• List all files and directories

 Simple list ls
 All hidden ls –a
 All details ls –l
 All the Files in the Descending Order of their Size ls –ls
 Combine some ls -la

• Quick edit with VI
 vi file_name.txt
 Switch to command mode Esc
 Save and exit :wq or ZZ

• Add a file
 touch file_name.txt

 many nicer word
documents/code developments
exist (notepad, emacs, atom)

26

UNIX/LINUX Ideas
• UNIX everything is seem as a file system (even printers, hard drives, etc)
• External drives, for instance, mounted as device file
• Basic Commands*

 Print pwd
 Change cd
 Create new folder mkdir
 Remove folder rm
 Copy files cp
 Move Files mv
 Clear screen clear
 Concatenate cat filename

Source: S. Das. Your UNIX/Linux: The
Ultimate Guide. Third. McGraw-Hill, Inc.,

*Linux Command Cheat Sheet https://www.guru99.com/linux-commands-cheat-sheet.html

(reads data from the file and gives their content as output)

 Create empty file (for
Mac) touch
filename

 Create empty file (for
windows) copy
con filename

27

https://www.guru99.com/linux-commands-cheat-sheet.html

Few Commands – test if properly installed
• Print working directory
 pwd

• Path for git
 which git

• Git version
 git --version

28

Some configurations
• git config --global user.name “Eduardo_Gildin”
• git config --global user.email egildin@tamu.edu
• git config –list
• git config user.name
• cd ~
• ls –la
• cat .gitconfig
• git config --global core.editor “notepad.exe”

29

mailto:egildin@tamu.edu

Some configurations – pick an editor
• git config --global core.editor “notepad.exe”
• Or
• git config --global core.editor “atom --wait”
• git config --global color.ui “true”
• cat .gitconfig
• cat .git/config

• Git help

30

Git Commands

31

Initialize a project (Git)
• Create a new folder (this will be your project or git repo)
• Navigate to this folder on the command line
• Folder is empty, but if you look closer, there is .git file

there this is where git will have all commands to track
the repository

• See folder (list files) ls –la .git
• See insider .git ls –la .git

32

Let’s try a simple example for Git Workflow
1. Create a new folder (your REPO) and go there

pwd mkdir FirstProject ls (or ls –la)
cd FirstProject (can use TAB for out complete)

2. Create a new file touch file1.txt
3. Edit file vi file1.txt
4. Check what is inside cat file1.txt
5. git status you may see untracked files
6. git add filename (or git add.) moving to the staging tree
7. Git status what happened?

Git does not know anything
about it. Any changes will
not be tracked!

Working directory

33

Let’s try a simple example for Git Workflow
6. … Git status what happened?
7. git commit --m “Succinct text for commit msg”
8. git log or git log –n 3 (or any number) limits the

number of logs
9. git status
10.Let’s repeat the process and create more files

Create 2 new files
file1.txt
file2.txt
file3.txt

Git status What happened?

34

Now, what happens if you edit the files
1. Git status anything to commit?
2. Edit file1.txt any modification
3. git status ? changes not staged for commit git recognizes this is a

tracked file and it is in the repo. Also, it recognizes the version is different.
4. Need to add to staging? git add file1.txt now you are adding the

changes!
5. Before we commit, make changes to file2, and file3 git status?
6. git add file2.txt git status
7. git commit –m “made changes to first and second files”
8. git status git log what do you see?

35

Now, what happens if you edit the files?
1. Add third file (git add file3.txt) and commit
2. git commit -m “modified all third file”
3. Edit file1.txt any modification
4. Git status? Git log? all three of the tree agree now!

36

Compare files –diff
1. Modify file1.txt for instance (add 2,3 lines) save
2. Git status? there is a change? What was the change? if someone open

the new file1.txt, there is no info what has changed.
3. Need to ask git what has exactly changed
4. use diff command (UNIX) git diff
5. Compare file a to file b a is at repo; b at local directory
6. + added to the file (green)
7. Minus subtracted from file, plus added to the file
8. File really long shows only snapshots of text that has changed.

Now we know what the changes are and get decide to commit or
not with the new version see more on “pull requests in GitHub”

37

Branching (1/3)
• Master branch is for production
• Major Bugs fixing or feature developments should go into

other branches

38

Branching (2/3)
• check file see what is in there

 cat filename

• Create a new branch
 git checkout –b branch_name (e.g., myfixes or new_fixes)

• List all branches (* is the current branch)
 git branch

• Make changes in the file and make a commit
 vi filename change something
 commit –am “Message” (recall –a to bypass add/stage; –m for message)

• NOTE: this commit happened into the branch and not in the master branch
 You can see this by git log

39

Branching (3/3)
• Now, let’s return to the master branch

 Git checkout master

• If you look at the file, it was the previous version
 cat filename

• To get these changes to master use merge
 git merge master new_fixes

• If you look AGAIN at the file new version
 cat filename
 git log

• Once you are done with the fixes, you can delete the branch!
 git branch –D branchname git branch

40

Revision Control Meets Social Media
• GitHub Cloud based remote repository server for Git
 Many open source projects use it, such as the Linux kernel.
 You can get free space for open source projects or you can pay

for private projects.
• Question: Do I have to use github to use Git?
 Answer: No!

41

But, GitHub allows you to
• Getting a deeper look at the changes/commits and project

management
• Ability to integrate collaboration seamlessly into your Git

repository
 Look at Issues
 Pull requests
 Visualize Projects
 Multiple Organizations
 Multiple Teams

Been able to discuss and collaborate
changes made to your repo with other
developers, contributors and other team
members

42

GitHub Pages – Like Webpage
• Let’s start with a few examples (from people I know)
 https://github.com/collections/github-pages-examples
 https://github.tamu.edu/RDCRG
 https://opensourcedrilling.org/
 https://seismicreservoirmodeling.github.io/SeReM/
 https://tonycsw2905.github.io/
 https://github.com/pymor

43

https://tonycsw2905.github.io/
https://github.tamu.edu/RDCRG
https://opensourcedrilling.org/
https://seismicreservoirmodeling.github.io/SeReM/
https://tonycsw2905.github.io/
https://github.com/pymor

GitHub Workflow
• Recall, in Git all of our work in organized into branches
 You can see this as a timeline how the project has changed over time
 There is one branch that is automatically created master
 Contains all the records associated with the changes in the project

ultimately is the one taken for production

Source: Aaron Stewart (GitHub Essentials) 44

GitHub Workflow (1/5) - Branch

Source: Aaron Stewart (GitHub Essentials) 45

GitHub Workflow (2/5) – make commits at
branch

Source: Aaron Stewart (GitHub Essentials) 46

GitHub Workflow (3/5) – Open Pull Request

Source: Aaron Stewart (GitHub Essentials)

It is a GitHub Operation

47

GitHub Workflow (4/5) – Discussion and
review of changes

48

GitHub Workflow (5/5) – Deploy and Merge

Source: Aaron Stewart (GitHub Essentials) 49

Create GitHub repository
• Since git works under the hood in GitHub, pretty much all the steps

we have taken so far can be replicated in GitHub. You can also
download the desktop version (desktop.github.com)

• Let’s start with a brand new repo
• Once logged in create a new repository

 Add information the repository name is like the name of the folder you
want to become a repo this is like git init in that folder example:
PETE219_Lab1

50

Project (folder) name

Public or Private?

What is Readme file?
What is .gitignore?
Licenses?

Click here!

51

Some more functionality edit
README.md

Markdown files*

* https://daringfireball.net/projects/markdown/ 52

https://daringfireball.net/projects/markdown/

Fork and Clone Repo
• To Clone the repo get local copy
 Go to clone or download button

 Copy url to clipboard
 In terminal git clone URL (paste)

• Files shows up to your folder
• Edit files

53

Clone Repo save to a local folder

• Copy URL
• Can open

directly in
Desktop

Or
• Use terminal

Git clone
54

Branches

• Created an
exact replica of
my repo

55

Make a Commit
• Switch to new Branch
• Make some changes, to say, the README file commit

to the change
 what git command is this?

• View history
 what git command is this?

• Switch back to the master branch what do you see?
• View history
 what git command is this?

56

Open and Merge Pull Requests
• Notifies developers about the changes you have pushed

to a branch in a repository
• Allow people to acknowledge and review changes before

merging into the main file
• Go to Pull Request Click on Open New Pull Request

57

• Start with Compare & Pull request
 Scroll down to the bottom of the page
 What do you see? Which git command is this?

58

• Let’s use Create a New Pull Request
 Select Master and Branches
 Select the Branch you have created
 Create the Pull Request
 Now you can MERGE
 Confirm
 Can Delete the Branch
 Which git commands have
we used?

59

Starting from someone’s else Github
• Forking A fork is a copy of a repository. Forking a

repository allows you to freely experiment with changes
without affecting the original project.

• Most commonly, forks are used to either propose changes
to someone else's project or to use someone else's project
as a starting point for your own idea.

60

Note: Clone a repo vs Download a zip
There is a fundamental difference between clone vs download. When you clone
a repo, you make a copy of the complete history of the git repo including the
.git folder. When you download the repo, you just download the source files
of the most recent commit of the default branch without the .git folder.
Essentially, when you download you can’t make use of any git commands, you
can’t view the commit messages, you are just not using git at all.

61

More training!!
1. Create a GitHub page from the GitHub Lab tutorial

a. Follow step-by-step commands as described in:
https://lab.github.com/githubtraining/introduction-to-github

62

https://lab.github.com/githubtraining/introduction-to-github

Learning Lab - Github

63

• If not installed yet, you will need to install the app into your
repo

	Open-Source Drilling Community (OSDC) – Technical Seminar Series
	Open-Source Drilling Community
	Slide Number 3
	Workshop Objectives
	Workshop Series – Tentative Schedule*
	What is Git/GitHub?
	Other common examples of version control
	What is Revision Control (VCS)?
	Repository
	Revision Purposes
	Very General Workflow (The Three Trees)
	Very General Workflow
	Very General Workflow
	Some Historical Perspective (1/3)
	Some Historical Perspective (2/3)
	Some Historical Perspective (3/3)
	Git – Explosion of popularity
	What is Distributed Version Control?
	Centralized X Distributed Models
	Slide Number 20
	Git Takes Snapshots
	Git file lifecycle
	A Local Git project has three areas
	Download/Install Git
	UINIX TERMINAL
	UNIX/LINUX Commands
	UNIX/LINUX Ideas
	Few Commands – test if properly installed
	Some configurations
	Some configurations – pick an editor
	Git Commands
	Initialize a project (Git)
	Let’s try a simple example for Git Workflow
	Let’s try a simple example for Git Workflow
	Now, what happens if you edit the files
	Now, what happens if you edit the files?
	Compare files –diff
	Branching (1/3)
	Branching (2/3)
	Branching (3/3)
	Revision Control Meets Social Media
	But, GitHub allows you to
	GitHub Pages – Like Webpage
	GitHub Workflow
	GitHub Workflow (1/5) - Branch
	GitHub Workflow (2/5) – make commits at branch
	GitHub Workflow (3/5) – Open Pull Request
	GitHub Workflow (4/5) – Discussion and review of changes
	GitHub Workflow (5/5) – Deploy and Merge
	Create GitHub repository
	Slide Number 51
	Some more functionality edit README.md
	Fork and Clone Repo
	Clone Repo save to a local folder
	Branches
	Make a Commit
	Open and Merge Pull Requests
	Slide Number 58
	Slide Number 59
	Starting from someone’s else Github
	Note: Clone a repo vs Download a zip
	More training!!
	Learning Lab - Github

